1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
use crate::{codec::Encode, util::PartialBuffer}; use std::io::Result; use flate2::{Compression, Crc}; #[derive(Debug)] enum State { Header(PartialBuffer<Vec<u8>>), Encoding, Footer(PartialBuffer<Vec<u8>>), Done, } #[derive(Debug)] pub struct GzipEncoder { inner: crate::codec::FlateEncoder, crc: Crc, state: State, } fn header(level: Compression) -> Vec<u8> { let level_byte = if level.level() >= Compression::best().level() { 0x02 } else if level.level() <= Compression::fast().level() { 0x04 } else { 0x00 }; vec![0x1f, 0x8b, 0x08, 0, 0, 0, 0, 0, level_byte, 0xff] } impl GzipEncoder { pub(crate) fn new(level: Compression) -> Self { Self { inner: crate::codec::FlateEncoder::new(level, false), crc: Crc::new(), state: State::Header(header(level).into()), } } fn footer(&mut self) -> Vec<u8> { let mut output = Vec::with_capacity(8); output.extend(&self.crc.sum().to_le_bytes()); output.extend(&self.crc.amount().to_le_bytes()); output } } impl Encode for GzipEncoder { fn encode( &mut self, input: &mut PartialBuffer<impl AsRef<[u8]>>, output: &mut PartialBuffer<impl AsRef<[u8]> + AsMut<[u8]>>, ) -> Result<()> { loop { match &mut self.state { State::Header(header) => { output.copy_unwritten_from(&mut *header); if header.unwritten().is_empty() { self.state = State::Encoding; } } State::Encoding => { let prior_written = input.written().len(); self.inner.encode(input, output)?; self.crc.update(&input.written()[prior_written..]); } State::Footer(_) | State::Done => panic!("encode after complete"), }; if input.unwritten().is_empty() || output.unwritten().is_empty() { return Ok(()); } } } fn flush( &mut self, output: &mut PartialBuffer<impl AsRef<[u8]> + AsMut<[u8]>>, ) -> Result<bool> { loop { let done = match &mut self.state { State::Header(header) => { output.copy_unwritten_from(&mut *header); if header.unwritten().is_empty() { self.state = State::Encoding; } false } State::Encoding => self.inner.flush(output)?, State::Footer(footer) => { output.copy_unwritten_from(&mut *footer); if footer.unwritten().is_empty() { self.state = State::Done; true } else { false } } State::Done => true, }; if done { return Ok(true); } if output.unwritten().is_empty() { return Ok(false); } } } fn finish( &mut self, output: &mut PartialBuffer<impl AsRef<[u8]> + AsMut<[u8]>>, ) -> Result<bool> { loop { match &mut self.state { State::Header(header) => { output.copy_unwritten_from(&mut *header); if header.unwritten().is_empty() { self.state = State::Encoding; } } State::Encoding => { if self.inner.finish(output)? { self.state = State::Footer(self.footer().into()); } } State::Footer(footer) => { output.copy_unwritten_from(&mut *footer); if footer.unwritten().is_empty() { self.state = State::Done; } } State::Done => {} }; if let State::Done = self.state { return Ok(true); } if output.unwritten().is_empty() { return Ok(false); } } } }