1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
use crate::stream::Stream; use std::borrow::Borrow; use std::hash::Hash; use std::pin::Pin; use std::task::{Context, Poll}; /// Combine many streams into one, indexing each source stream with a unique /// key. /// /// `StreamMap` is similar to [`StreamExt::merge`] in that it combines source /// streams into a single merged stream that yields values in the order that /// they arrive from the source streams. However, `StreamMap` has a lot more /// flexibility in usage patterns. /// /// `StreamMap` can: /// /// * Merge an arbitrary number of streams. /// * Track which source stream the value was received from. /// * Handle inserting and removing streams from the set of managed streams at /// any point during iteration. /// /// All source streams held by `StreamMap` are indexed using a key. This key is /// included with the value when a source stream yields a value. The key is also /// used to remove the stream from the `StreamMap` before the stream has /// completed streaming. /// /// # `Unpin` /// /// Because the `StreamMap` API moves streams during runtime, both streams and /// keys must be `Unpin`. In order to insert a `!Unpin` stream into a /// `StreamMap`, use [`pin!`] to pin the stream to the stack or [`Box::pin`] to /// pin the stream in the heap. /// /// # Implementation /// /// `StreamMap` is backed by a `Vec<(K, V)>`. There is no guarantee that this /// internal implementation detail will persist in future versions, but it is /// important to know the runtime implications. In general, `StreamMap` works /// best with a "smallish" number of streams as all entries are scanned on /// insert, remove, and polling. In cases where a large number of streams need /// to be merged, it may be advisable to use tasks sending values on a shared /// [`mpsc`] channel. /// /// [`StreamExt::merge`]: crate::stream::StreamExt::merge /// [`mpsc`]: crate::sync::mpsc /// [`pin!`]: macro@pin /// [`Box::pin`]: std::boxed::Box::pin /// /// # Examples /// /// Merging two streams, then remove them after receiving the first value /// /// ``` /// use tokio::stream::{StreamExt, StreamMap}; /// use tokio::sync::mpsc; /// /// #[tokio::main] /// async fn main() { /// let (mut tx1, rx1) = mpsc::channel(10); /// let (mut tx2, rx2) = mpsc::channel(10); /// /// tokio::spawn(async move { /// tx1.send(1).await.unwrap(); /// /// // This value will never be received. The send may or may not return /// // `Err` depending on if the remote end closed first or not. /// let _ = tx1.send(2).await; /// }); /// /// tokio::spawn(async move { /// tx2.send(3).await.unwrap(); /// let _ = tx2.send(4).await; /// }); /// /// let mut map = StreamMap::new(); /// /// // Insert both streams /// map.insert("one", rx1); /// map.insert("two", rx2); /// /// // Read twice /// for _ in 0..2 { /// let (key, val) = map.next().await.unwrap(); /// /// if key == "one" { /// assert_eq!(val, 1); /// } else { /// assert_eq!(val, 3); /// } /// /// // Remove the stream to prevent reading the next value /// map.remove(key); /// } /// } /// ``` /// /// This example models a read-only client to a chat system with channels. The /// client sends commands to join and leave channels. `StreamMap` is used to /// manage active channel subscriptions. /// /// For simplicity, messages are displayed with `println!`, but they could be /// sent to the client over a socket. /// /// ```no_run /// use tokio::stream::{Stream, StreamExt, StreamMap}; /// /// enum Command { /// Join(String), /// Leave(String), /// } /// /// fn commands() -> impl Stream<Item = Command> { /// // Streams in user commands by parsing `stdin`. /// # tokio::stream::pending() /// } /// /// // Join a channel, returns a stream of messages received on the channel. /// fn join(channel: &str) -> impl Stream<Item = String> + Unpin { /// // left as an exercise to the reader /// # tokio::stream::pending() /// } /// /// #[tokio::main] /// async fn main() { /// let mut channels = StreamMap::new(); /// /// // Input commands (join / leave channels). /// let cmds = commands(); /// tokio::pin!(cmds); /// /// loop { /// tokio::select! { /// Some(cmd) = cmds.next() => { /// match cmd { /// Command::Join(chan) => { /// // Join the channel and add it to the `channels` /// // stream map /// let msgs = join(&chan); /// channels.insert(chan, msgs); /// } /// Command::Leave(chan) => { /// channels.remove(&chan); /// } /// } /// } /// Some((chan, msg)) = channels.next() => { /// // Received a message, display it on stdout with the channel /// // it originated from. /// println!("{}: {}", chan, msg); /// } /// // Both the `commands` stream and the `channels` stream are /// // complete. There is no more work to do, so leave the loop. /// else => break, /// } /// } /// } /// ``` #[derive(Debug, Default)] pub struct StreamMap<K, V> { /// Streams stored in the map entries: Vec<(K, V)>, } impl<K, V> StreamMap<K, V> { /// Creates an empty `StreamMap`. /// /// The stream map is initially created with a capacity of `0`, so it will /// not allocate until it is first inserted into. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, Pending}; /// /// let map: StreamMap<&str, Pending<()>> = StreamMap::new(); /// ``` pub fn new() -> StreamMap<K, V> { StreamMap { entries: vec![] } } /// Creates an empty `StreamMap` with the specified capacity. /// /// The stream map will be able to hold at least `capacity` elements without /// reallocating. If `capacity` is 0, the stream map will not allocate. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, Pending}; /// /// let map: StreamMap<&str, Pending<()>> = StreamMap::with_capacity(10); /// ``` pub fn with_capacity(capacity: usize) -> StreamMap<K, V> { StreamMap { entries: Vec::with_capacity(capacity), } } /// Returns an iterator visiting all keys in arbitrary order. /// /// The iterator element type is &'a K. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, pending}; /// /// let mut map = StreamMap::new(); /// /// map.insert("a", pending::<i32>()); /// map.insert("b", pending()); /// map.insert("c", pending()); /// /// for key in map.keys() { /// println!("{}", key); /// } /// ``` pub fn keys(&self) -> impl Iterator<Item = &K> { self.entries.iter().map(|(k, _)| k) } /// An iterator visiting all values in arbitrary order. /// /// The iterator element type is &'a V. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, pending}; /// /// let mut map = StreamMap::new(); /// /// map.insert("a", pending::<i32>()); /// map.insert("b", pending()); /// map.insert("c", pending()); /// /// for stream in map.values() { /// println!("{:?}", stream); /// } /// ``` pub fn values(&self) -> impl Iterator<Item = &V> { self.entries.iter().map(|(_, v)| v) } /// An iterator visiting all values mutably in arbitrary order. /// /// The iterator element type is &'a mut V. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, pending}; /// /// let mut map = StreamMap::new(); /// /// map.insert("a", pending::<i32>()); /// map.insert("b", pending()); /// map.insert("c", pending()); /// /// for stream in map.values_mut() { /// println!("{:?}", stream); /// } /// ``` pub fn values_mut(&mut self) -> impl Iterator<Item = &mut V> { self.entries.iter_mut().map(|(_, v)| v) } /// Returns the number of streams the map can hold without reallocating. /// /// This number is a lower bound; the `StreamMap` might be able to hold /// more, but is guaranteed to be able to hold at least this many. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, Pending}; /// /// let map: StreamMap<i32, Pending<()>> = StreamMap::with_capacity(100); /// assert!(map.capacity() >= 100); /// ``` pub fn capacity(&self) -> usize { self.entries.capacity() } /// Returns the number of streams in the map. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, pending}; /// /// let mut a = StreamMap::new(); /// assert_eq!(a.len(), 0); /// a.insert(1, pending::<i32>()); /// assert_eq!(a.len(), 1); /// ``` pub fn len(&self) -> usize { self.entries.len() } /// Returns `true` if the map contains no elements. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// assert!(a.is_empty()); /// a.insert(1, "a"); /// assert!(!a.is_empty()); /// ``` pub fn is_empty(&self) -> bool { self.entries.is_empty() } /// Clears the map, removing all key-stream pairs. Keeps the allocated /// memory for reuse. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, pending}; /// /// let mut a = StreamMap::new(); /// a.insert(1, pending::<i32>()); /// a.clear(); /// assert!(a.is_empty()); /// ``` pub fn clear(&mut self) { self.entries.clear(); } /// Insert a key-stream pair into the map. /// /// If the map did not have this key present, `None` is returned. /// /// If the map did have this key present, the new `stream` replaces the old /// one and the old stream is returned. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, pending}; /// /// let mut map = StreamMap::new(); /// /// assert!(map.insert(37, pending::<i32>()).is_none()); /// assert!(!map.is_empty()); /// /// map.insert(37, pending()); /// assert!(map.insert(37, pending()).is_some()); /// ``` pub fn insert(&mut self, k: K, stream: V) -> Option<V> where K: Hash + Eq, { let ret = self.remove(&k); self.entries.push((k, stream)); ret } /// Removes a key from the map, returning the stream at the key if the key was previously in the map. /// /// The key may be any borrowed form of the map's key type, but `Hash` and /// `Eq` on the borrowed form must match those for the key type. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, pending}; /// /// let mut map = StreamMap::new(); /// map.insert(1, pending::<i32>()); /// assert!(map.remove(&1).is_some()); /// assert!(map.remove(&1).is_none()); /// ``` pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> where K: Borrow<Q>, Q: Hash + Eq, { for i in 0..self.entries.len() { if self.entries[i].0.borrow() == k { return Some(self.entries.swap_remove(i).1); } } None } /// Returns `true` if the map contains a stream for the specified key. /// /// The key may be any borrowed form of the map's key type, but `Hash` and /// `Eq` on the borrowed form must match those for the key type. /// /// # Examples /// /// ``` /// use tokio::stream::{StreamMap, pending}; /// /// let mut map = StreamMap::new(); /// map.insert(1, pending::<i32>()); /// assert_eq!(map.contains_key(&1), true); /// assert_eq!(map.contains_key(&2), false); /// ``` pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool where K: Borrow<Q>, Q: Hash + Eq, { for i in 0..self.entries.len() { if self.entries[i].0.borrow() == k { return true; } } false } } impl<K, V> StreamMap<K, V> where K: Unpin, V: Stream + Unpin, { /// Polls the next value, includes the vec entry index fn poll_next_entry(&mut self, cx: &mut Context<'_>) -> Poll<Option<(usize, V::Item)>> { use Poll::*; let start = crate::util::thread_rng_n(self.entries.len() as u32) as usize; let mut idx = start; for _ in 0..self.entries.len() { let (_, stream) = &mut self.entries[idx]; match Pin::new(stream).poll_next(cx) { Ready(Some(val)) => return Ready(Some((idx, val))), Ready(None) => { // Remove the entry self.entries.swap_remove(idx); // Check if this was the last entry, if so the cursor needs // to wrap if idx == self.entries.len() { idx = 0; } else if idx < start && start <= self.entries.len() { // The stream being swapped into the current index has // already been polled, so skip it. idx = idx.wrapping_add(1) % self.entries.len(); } } Pending => { idx = idx.wrapping_add(1) % self.entries.len(); } } } // If the map is empty, then the stream is complete. if self.entries.is_empty() { Ready(None) } else { Pending } } } impl<K, V> Stream for StreamMap<K, V> where K: Clone + Unpin, V: Stream + Unpin, { type Item = (K, V::Item); fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { if let Some((idx, val)) = ready!(self.poll_next_entry(cx)) { let key = self.entries[idx].0.clone(); Poll::Ready(Some((key, val))) } else { Poll::Ready(None) } } fn size_hint(&self) -> (usize, Option<usize>) { let mut ret = (0, Some(0)); for (_, stream) in &self.entries { let hint = stream.size_hint(); ret.0 += hint.0; match (ret.1, hint.1) { (Some(a), Some(b)) => ret.1 = Some(a + b), (Some(_), None) => ret.1 = None, _ => {} } } ret } }