Files
adler
aho_corasick
async_compression
async_trait
base64
bitflags
bytes
cfg_if
chrono
crc32fast
dirs
dirs_sys
dtoa
encoding_rs
eui48
fallible_iterator
flate2
fnv
foreign_types
foreign_types_shared
form_urlencoded
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
h2
hashbrown
http
http_body
httparse
httpdate
hyper
hyper_tls
idna
indexmap
iovec
ipnet
itoa
lazy_static
libc
linked_hash_map
log
matches
memchr
mime
mime_guess
miniz_oxide
mio
native_tls
net2
num_integer
num_traits
once_cell
openssl
openssl_probe
openssl_sys
openstack
osauth
osproto
percent_encoding
pin_project
pin_project_internal
pin_project_lite
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quote
regex
regex_syntax
reqwest
rustc_serialize
ryu
serde
serde_derive
serde_json
serde_urlencoded
serde_yaml
slab
socket2
syn
thread_local
time
tinyvec
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_tls
tokio_util
tower_service
tracing
tracing_core
tracing_futures
try_lock
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
waiter
want
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#[cfg(target_arch = "x86")]
use core::arch::x86 as arch;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64 as arch;

#[derive(Clone)]
pub struct State {
    state: u32,
}

impl State {
    #[cfg(not(feature = "std"))]
    pub fn new(state: u32) -> Option<Self> {
        if cfg!(target_feature = "pclmulqdq")
            && cfg!(target_feature = "sse2")
            && cfg!(target_feature = "sse4.1")
        {
            // SAFETY: The conditions above ensure that all
            //         required instructions are supported by the CPU.
            Some(Self { state })
        } else {
            None
        }
    }

    #[cfg(feature = "std")]
    pub fn new(state: u32) -> Option<Self> {
        if is_x86_feature_detected!("pclmulqdq")
            && is_x86_feature_detected!("sse2")
            && is_x86_feature_detected!("sse4.1")
        {
            // SAFETY: The conditions above ensure that all
            //         required instructions are supported by the CPU.
            Some(Self { state })
        } else {
            None
        }
    }

    pub fn update(&mut self, buf: &[u8]) {
        // SAFETY: The `State::new` constructor ensures that all
        //         required instructions are supported by the CPU.
        self.state = unsafe { calculate(self.state, buf) }
    }

    pub fn finalize(self) -> u32 {
        self.state
    }

    pub fn reset(&mut self) {
        self.state = 0;
    }

    pub fn combine(&mut self, other: u32, amount: u64) {
        self.state = ::combine::combine(self.state, other, amount);
    }
}

const K1: i64 = 0x154442bd4;
const K2: i64 = 0x1c6e41596;
const K3: i64 = 0x1751997d0;
const K4: i64 = 0x0ccaa009e;
const K5: i64 = 0x163cd6124;
const K6: i64 = 0x1db710640;

const P_X: i64 = 0x1DB710641;
const U_PRIME: i64 = 0x1F7011641;

#[cfg(feature = "std")]
unsafe fn debug(s: &str, a: arch::__m128i) -> arch::__m128i {
    if false {
        union A {
            a: arch::__m128i,
            b: [u8; 16],
        }
        let x = A { a }.b;
        print!(" {:20} | ", s);
        for x in x.iter() {
            print!("{:02x} ", x);
        }
        println!();
    }
    return a;
}

#[cfg(not(feature = "std"))]
unsafe fn debug(_s: &str, a: arch::__m128i) -> arch::__m128i {
    a
}

#[target_feature(enable = "pclmulqdq", enable = "sse2", enable = "sse4.1")]
pub unsafe fn calculate(crc: u32, mut data: &[u8]) -> u32 {
    // In theory we can accelerate smaller chunks too, but for now just rely on
    // the fallback implementation as it's too much hassle and doesn't seem too
    // beneficial.
    if data.len() < 128 {
        return ::baseline::update_fast_16(crc, data);
    }

    // Step 1: fold by 4 loop
    let mut x3 = get(&mut data);
    let mut x2 = get(&mut data);
    let mut x1 = get(&mut data);
    let mut x0 = get(&mut data);

    // fold in our initial value, part of the incremental crc checksum
    x3 = arch::_mm_xor_si128(x3, arch::_mm_cvtsi32_si128(!crc as i32));

    let k1k2 = arch::_mm_set_epi64x(K2, K1);
    while data.len() >= 64 {
        x3 = reduce128(x3, get(&mut data), k1k2);
        x2 = reduce128(x2, get(&mut data), k1k2);
        x1 = reduce128(x1, get(&mut data), k1k2);
        x0 = reduce128(x0, get(&mut data), k1k2);
    }

    let k3k4 = arch::_mm_set_epi64x(K4, K3);
    let mut x = reduce128(x3, x2, k3k4);
    x = reduce128(x, x1, k3k4);
    x = reduce128(x, x0, k3k4);

    // Step 2: fold by 1 loop
    while data.len() >= 16 {
        x = reduce128(x, get(&mut data), k3k4);
    }

    debug("128 > 64 init", x);

    // Perform step 3, reduction from 128 bits to 64 bits. This is
    // significantly different from the paper and basically doesn't follow it
    // at all. It's not really clear why, but implementations of this algorithm
    // in Chrome/Linux diverge in the same way. It is beyond me why this is
    // different than the paper, maybe the paper has like errata or something?
    // Unclear.
    //
    // It's also not clear to me what's actually happening here and/or why, but
    // algebraically what's happening is:
    //
    // x = (x[0:63] • K4) ^ x[64:127]           // 96 bit result
    // x = ((x[0:31] as u64) • K5) ^ x[32:95]   // 64 bit result
    //
    // It's... not clear to me what's going on here. The paper itself is pretty
    // vague on this part but definitely uses different constants at least.
    // It's not clear to me, reading the paper, where the xor operations are
    // happening or why things are shifting around. This implementation...
    // appears to work though!
    drop(K6);
    let x = arch::_mm_xor_si128(
        arch::_mm_clmulepi64_si128(x, k3k4, 0x10),
        arch::_mm_srli_si128(x, 8),
    );
    let x = arch::_mm_xor_si128(
        arch::_mm_clmulepi64_si128(
            arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
            arch::_mm_set_epi64x(0, K5),
            0x00,
        ),
        arch::_mm_srli_si128(x, 4),
    );
    debug("128 > 64 xx", x);

    // Perform a Barrett reduction from our now 64 bits to 32 bits. The
    // algorithm for this is described at the end of the paper, and note that
    // this also implements the "bit reflected input" variant.
    let pu = arch::_mm_set_epi64x(U_PRIME, P_X);

    // T1(x) = ⌊(R(x) % x^32)⌋ • μ
    let t1 = arch::_mm_clmulepi64_si128(
        arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
        pu,
        0x10,
    );
    // T2(x) = ⌊(T1(x) % x^32)⌋ • P(x)
    let t2 = arch::_mm_clmulepi64_si128(
        arch::_mm_and_si128(t1, arch::_mm_set_epi32(0, 0, 0, !0)),
        pu,
        0x00,
    );
    // We're doing the bit-reflected variant, so get the upper 32-bits of the
    // 64-bit result instead of the lower 32-bits.
    //
    // C(x) = R(x) ^ T2(x) / x^32
    let c = arch::_mm_extract_epi32(arch::_mm_xor_si128(x, t2), 1) as u32;

    if !data.is_empty() {
        ::baseline::update_fast_16(!c, data)
    } else {
        !c
    }
}

unsafe fn reduce128(a: arch::__m128i, b: arch::__m128i, keys: arch::__m128i) -> arch::__m128i {
    let t1 = arch::_mm_clmulepi64_si128(a, keys, 0x00);
    let t2 = arch::_mm_clmulepi64_si128(a, keys, 0x11);
    arch::_mm_xor_si128(arch::_mm_xor_si128(b, t1), t2)
}

unsafe fn get(a: &mut &[u8]) -> arch::__m128i {
    debug_assert!(a.len() >= 16);
    let r = arch::_mm_loadu_si128(a.as_ptr() as *const arch::__m128i);
    *a = &a[16..];
    return r;
}

#[cfg(test)]
mod test {
    quickcheck! {
        fn check_against_baseline(init: u32, chunks: Vec<(Vec<u8>, usize)>) -> bool {
            let mut baseline = super::super::super::baseline::State::new(init);
            let mut pclmulqdq = super::State::new(init).expect("not supported");
            for (chunk, mut offset) in chunks {
                // simulate random alignments by offsetting the slice by up to 15 bytes
                offset &= 0xF;
                if chunk.len() <= offset {
                    baseline.update(&chunk);
                    pclmulqdq.update(&chunk);
                } else {
                    baseline.update(&chunk[offset..]);
                    pclmulqdq.update(&chunk[offset..]);
                }
            }
            pclmulqdq.finalize() == baseline.finalize()
        }
    }
}