Files
adler
aho_corasick
async_compression
async_trait
base64
bitflags
bytes
cfg_if
chrono
crc32fast
dirs
dirs_sys
dtoa
encoding_rs
eui48
fallible_iterator
flate2
fnv
foreign_types
foreign_types_shared
form_urlencoded
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
h2
hashbrown
http
http_body
httparse
httpdate
hyper
hyper_tls
idna
indexmap
iovec
ipnet
itoa
lazy_static
libc
linked_hash_map
log
matches
memchr
mime
mime_guess
miniz_oxide
mio
native_tls
net2
num_integer
num_traits
once_cell
openssl
openssl_probe
openssl_sys
openstack
osauth
osproto
percent_encoding
pin_project
pin_project_internal
pin_project_lite
pin_utils
proc_macro2
proc_macro_hack
proc_macro_nested
quote
regex
regex_syntax
reqwest
rustc_serialize
ryu
serde
serde_derive
serde_json
serde_urlencoded
serde_yaml
slab
socket2
syn
thread_local
time
tinyvec
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_tls
tokio_util
tower_service
tracing
tracing_core
tracing_futures
try_lock
unicase
unicode_bidi
unicode_normalization
unicode_xid
url
waiter
want
yaml_rust
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
use crate::codec::Framed;

use tokio::io::{AsyncRead, AsyncWrite};

use bytes::BytesMut;
use std::io;

/// Decoding of frames via buffers.
///
/// This trait is used when constructing an instance of [`Framed`] or
/// [`FramedRead`]. An implementation of `Decoder` takes a byte stream that has
/// already been buffered in `src` and decodes the data into a stream of
/// `Self::Item` frames.
///
/// Implementations are able to track state on `self`, which enables
/// implementing stateful streaming parsers. In many cases, though, this type
/// will simply be a unit struct (e.g. `struct HttpDecoder`).
///
/// [`Framed`]: crate::codec::Framed
/// [`FramedRead`]: crate::codec::FramedRead
pub trait Decoder {
    /// The type of decoded frames.
    type Item;

    /// The type of unrecoverable frame decoding errors.
    ///
    /// If an individual message is ill-formed but can be ignored without
    /// interfering with the processing of future messages, it may be more
    /// useful to report the failure as an `Item`.
    ///
    /// `From<io::Error>` is required in the interest of making `Error` suitable
    /// for returning directly from a [`FramedRead`], and to enable the default
    /// implementation of `decode_eof` to yield an `io::Error` when the decoder
    /// fails to consume all available data.
    ///
    /// Note that implementors of this trait can simply indicate `type Error =
    /// io::Error` to use I/O errors as this type.
    ///
    /// [`FramedRead`]: crate::codec::FramedRead
    type Error: From<io::Error>;

    /// Attempts to decode a frame from the provided buffer of bytes.
    ///
    /// This method is called by [`FramedRead`] whenever bytes are ready to be
    /// parsed. The provided buffer of bytes is what's been read so far, and
    /// this instance of `Decode` can determine whether an entire frame is in
    /// the buffer and is ready to be returned.
    ///
    /// If an entire frame is available, then this instance will remove those
    /// bytes from the buffer provided and return them as a decoded
    /// frame. Note that removing bytes from the provided buffer doesn't always
    /// necessarily copy the bytes, so this should be an efficient operation in
    /// most circumstances.
    ///
    /// If the bytes look valid, but a frame isn't fully available yet, then
    /// `Ok(None)` is returned. This indicates to the [`Framed`] instance that
    /// it needs to read some more bytes before calling this method again.
    ///
    /// Note that the bytes provided may be empty. If a previous call to
    /// `decode` consumed all the bytes in the buffer then `decode` will be
    /// called again until it returns `Ok(None)`, indicating that more bytes need to
    /// be read.
    ///
    /// Finally, if the bytes in the buffer are malformed then an error is
    /// returned indicating why. This informs [`Framed`] that the stream is now
    /// corrupt and should be terminated.
    ///
    /// [`Framed`]: crate::codec::Framed
    /// [`FramedRead`]: crate::codec::FramedRead
    ///
    /// # Buffer management
    ///
    /// Before returning from the function, implementations should ensure that
    /// the buffer has appropriate capacity in anticipation of future calls to
    /// `decode`. Failing to do so leads to inefficiency.
    ///
    /// For example, if frames have a fixed length, or if the length of the
    /// current frame is known from a header, a possible buffer management
    /// strategy is:
    ///
    /// ```no_run
    /// # use std::io;
    /// #
    /// # use bytes::BytesMut;
    /// # use tokio_util::codec::Decoder;
    /// #
    /// # struct MyCodec;
    /// #
    /// impl Decoder for MyCodec {
    ///     // ...
    ///     # type Item = BytesMut;
    ///     # type Error = io::Error;
    ///
    ///     fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
    ///         // ...
    ///
    ///         // Reserve enough to complete decoding of the current frame.
    ///         let current_frame_len: usize = 1000; // Example.
    ///         // And to start decoding the next frame.
    ///         let next_frame_header_len: usize = 10; // Example.
    ///         src.reserve(current_frame_len + next_frame_header_len);
    ///
    ///         return Ok(None);
    ///     }
    /// }
    /// ```
    ///
    /// An optimal buffer management strategy minimizes reallocations and
    /// over-allocations.
    fn decode(&mut self, src: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error>;

    /// A default method available to be called when there are no more bytes
    /// available to be read from the underlying I/O.
    ///
    /// This method defaults to calling `decode` and returns an error if
    /// `Ok(None)` is returned while there is unconsumed data in `buf`.
    /// Typically this doesn't need to be implemented unless the framing
    /// protocol differs near the end of the stream.
    ///
    /// Note that the `buf` argument may be empty. If a previous call to
    /// `decode_eof` consumed all the bytes in the buffer, `decode_eof` will be
    /// called again until it returns `None`, indicating that there are no more
    /// frames to yield. This behavior enables returning finalization frames
    /// that may not be based on inbound data.
    fn decode_eof(&mut self, buf: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
        match self.decode(buf)? {
            Some(frame) => Ok(Some(frame)),
            None => {
                if buf.is_empty() {
                    Ok(None)
                } else {
                    Err(io::Error::new(io::ErrorKind::Other, "bytes remaining on stream").into())
                }
            }
        }
    }

    /// Provides a [`Stream`] and [`Sink`] interface for reading and writing to this
    /// `Io` object, using `Decode` and `Encode` to read and write the raw data.
    ///
    /// Raw I/O objects work with byte sequences, but higher-level code usually
    /// wants to batch these into meaningful chunks, called "frames". This
    /// method layers framing on top of an I/O object, by using the `Codec`
    /// traits to handle encoding and decoding of messages frames. Note that
    /// the incoming and outgoing frame types may be distinct.
    ///
    /// This function returns a *single* object that is both `Stream` and
    /// `Sink`; grouping this into a single object is often useful for layering
    /// things like gzip or TLS, which require both read and write access to the
    /// underlying object.
    ///
    /// If you want to work more directly with the streams and sink, consider
    /// calling `split` on the [`Framed`] returned by this method, which will
    /// break them into separate objects, allowing them to interact more easily.
    ///
    /// [`Stream`]: tokio::stream::Stream
    /// [`Sink`]: futures_sink::Sink
    /// [`Framed`]: crate::codec::Framed
    fn framed<T: AsyncRead + AsyncWrite + Sized>(self, io: T) -> Framed<T, Self>
    where
        Self: Sized,
    {
        Framed::new(io, self)
    }
}